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Pressure-driven flow of a thin viscous sheet 
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Systematic asymptotic expansions are used to find the leading-order equations for the 
pressure-driven flow of a thin sheet of viscous fluid. Assuming the fluid geometry to be 
slender with non-negligible curvatures, the Navier-Stokes equations with appropriate 
free-surface conditions are simplified to give a ‘shell-theory’ model. The fluid geometry 
is not known in advance and a time-dependent coordinate frame has to be employed. 
The effects of surface tension, gravity and inertia can also be incorporated in the 
model. 

1. Introduction 
This paper is motivated by the continuing need for systematic reductions of 

the Navier-Stokes equations for the flow of viscous fluids with free boundaries in 
high-aspect-ratio configurations. While there is a burgeoning literature concern- 
ing the modelling of nearly one-dimensional fibres in many different configura- 
tions (Matovich & Pearson 1969; Pearson & Matovich 1969; Shah & Pearson 1972; 
Geyling 1976; Geyling & Homsy 1980; Schultz & Davis 1982; Dewynne, Ockendon 
& Wilmott 1989, 1992; Dewynne, Howell & Wilmott 1994), the theory of fluid sheets 
is much less well-developed mathematically (Pearson & Petrie 1970a,b ; Yeow 1976; 
Buckmaster, Nachman & Ting 1975; Buckmaster & Nachman 1978; Wilmott 1989; 
Yarin, Gospodinov & Roussinov 1994; much background literature can be found in 
the book of Pearson 1985). Many of these authors were studying the process of 
film-blowing and in particular the phenomenon of draw-resonance and hence there 
has been an emphasis on steady axisymmetric flow and its linear stability. The basic 
model for isoviscous Newtonian flow introduced by Pearson & Petrie (19704 works 
with intrinsic coordinates tailored to the unknown steady film surface; later generaliza- 
tions cover non-Newtonian and viscoelastic films (Gupta, Metzner & Wissbrun 1982; 
Cao & Campbell 1990) and a nonlinear evolution model has been considered briefly 
by Yarin et al. (1994). In this paper we have been motivated by flows occur- 
ring in glass bottle manufacture to try to write down a self-consistent derivation 
of some models for general unsteady pressure-driven flows in arbitrarily curved 
sheets, with the hope that the predictions of these models can be compared to the 
CFD codes that are currently used in the glass industry (Saxelby & Aitchison 1986; 
Burley & Graham 1991; Graham et al. 1992). Thus our model stands in the same 
relation to that of Pearson & Petrie (1970~) as do the evolution models for fibre- 
drawing (such as Dewynne et al. 1989) to the steady draw-down theory of Matovich 
& Pearson (1969) and Shah & Pearson (1972). 

The idea of using simplified ‘thin geometry’ models has been exploited exten- 
sively in solid mechanics and we may expect the models we derive to be closely 
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related, modulo a time derivative, to those for plates and shells (see for instance 
Love 1927; Landau & Lifschitz 1959; Timoshenko & Woinowsky-Krieger 1959). For 
steady flows this point has already been made in Pearson & Petrie (1970a), but there is 
one important modelling difference between the fluid and solid mechanics situations: 
viscous liquid sheets can readily undergo deformations, in particular extensions, that 
for solids would be large enough to demand mechanical nonlinearity and/or plastic 
flow in addition to geometric nonlinearity. 

The relative ease with which fluid sheets can be modelled in certain symmetric 
configurations will enable us to make some general statements about the response 
of a sheet to normal forces in terms of finite-time blow-up, history-dependence and 
analogies between one- and two-dimensional flow. 

The plan of the paper is to derive the basic sheet model in $2, using tailored 
curvilinear coordinates and assuming a balance between the external forces and 
viscous stresses in the fluid. With the problem of bottle-blowing in mind, we include 
the effect of an imposed pressure drop across the sheet. This model is then analysed in 
8 3 for certain symmetric geometries. In particular we demonstrate blow-up behaviour 
and give some numerical solutions in certain parameter regimes of relevance in bottle 
manufacture. In the Appendix we extend the theory to include the effects of surface 
tension, gravity and inertia, still excluding other practically important mechanisms 
such as heat transfer and contact between the sheet and a containing boundary. 

1.1. Parameter regimes 
Glass compositions vary quite substantially, depending on the purpose of the glass 
product. Typically for bottles the glass is made from approximately 75% silica, 15% 
soda and 10% lime. The different parameters in the model depend largely on the 
composition and the circumstances, in particular the temperatures in the process, 
which may vary from 600°C to 1100°C. For the production of glass containers or 
bottles the parameters are of the order (see Graham 1987 and references therein): 

surface tension: y - 0.3 Nm-', density : p - 2500 kgm3, 
pressure drop : AP - 7000 Pa, viscosity : p - lo2 - lo8 NsmP2, 
radius : 

With a length scale L = 6 cm and thickness h = 0.5 cm, a typical aspect ratio is given 
by E = h / L  = 0.1. Of course the aspect ratio changes considerably during the blowing 
process and the variation in p can result in large deviations in the Reynolds number. 
With a typical velocity given by U = LAP/&p,  the dimensionless parameters are 

L - 0.02 - 0.1 m, thickness : h - 0.003 - 0.015 m. 

The order of the parameters motivates us to consider the Stokes equations for slow 
viscous flow, neglecting inertia, surface tension and gravity for most of this paper. 
These other effects will be considered briefly in the Appendix. 

2. The dynamics of curved viscous sheets 
We consider the dynamics of a general slender sheet of viscous fluid where the 

curvature of the sheet is not small. We follow Yeow (1976) and Pearson (1985, §8.2), 
for example, and choose a coordinate system fixed in the fluid sheet, supposing the 
centre-surface of the sheet to be given by 

r = r c h ,  x 2 , 0 ,  
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where x1 and x2 are spatial parameters and t is time. The unit normal to this surface 
is given by 

As noted in Pearson (1985, $8.2), this coordinate system is time-dependent and, at 
present, largely arbitrary. However our analysis is based upon the simplifications 
which are obtained when we choose to parametrize the sheet in such a way that lines 
of constant x1 and x2 are lines of principal curvature? of the centre-surface r = r,, so 
that with respect to these parameters the first and second fundamental forms of the 
surface are orthogonal (see e.g. Kreyszig 1959). Hence we may define an orthonormal 
basis (el, e2, n} ,  where 

and the derivatives of n are given by 

where K i  are the principal curvatures. We shall be using the coordinates (xl,x2,n) to 
describe a general point of the fluid sheet whose position is given by 

r = r, + nn. (2.4) 

Using (2.3) we see that this coordinate system is orthogonal, with metric ltdx: + 
1:dx: + 1,2dx;, where 

11 = q ( l -  q n ) ,  12 = 4 1 -  Qn), 13 = 1. (2.5) 

The velocity of the centre-surface r = r, is 

(2.6) - = ulel + u2e2 + v3n. 

Finally, by differentiating (2.2) and (2.3) with respect to X I  and x2, we have the usual 
differential geometry relations between ai and Ki : 

arc 
at 

((2.8) is the so-called Gauss characteristic equation), while differentiation of (2.6) gives 
three relations for the velocity components of the centre-surface : 

8% avl aal 
at ax,  ax2 

a2- = u2- + v2- - ala21c1v3, 

(2.10) 

t At an umbilic point of the surface, where the principal curvatures are equal, these lines are not 
uniquely defined and at an isolated umbilic our model will possess spurious singular solutions. 
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(2.11) 

2.1. Non-dimensionalization and scaling 
We non-dimensionalize the equations so as to exploit the slenderness of the sheet. 
We suppose L is a typical length scale for the sheet, say a typical radius of curvature, 
while EL is a (much smaller) typical thickness. We allow for varying viscosity, but 
suppose that it is typically of order M .  We denote by ( u I , u ~ , u ~ )  the fluid velocities in 
the el-, e2- and n-directions. The scalings we employ are 

I XI = Lx',, t = AP-lEMt', u1 = LAPE-'M-'u' 1, a1 =a ; ,  1c1 = L-l~c;, 

x2 = Lx;, r, = Lr,', u2 = LAPE-'M-'u;, a2 = a;, 7c2 = L-'K;, 

n = ELn', h = ELh', u3 = LAPE-~M-'~' 3, p == Mp', p =  APE-'^'. 
(2.12) 

Without loss of generality we have supposed x1 and x2 to have dimensions of length 
and the time scale has been chosen to be LU-' = AP-~EM. Other consistent scalings 
are also possible, in particular on shorter timescales, and we will return to this point 
in the conclusion. 

These scalings are used to non-dimensionalize the Stokes equations and boundary 
conditions. Solutions are sought in the form of asymptotic expansions in powers of 
the slenderness parameter E, typically (dropping primes) 

u1 - uy) + EU(11) + E2uy + . . . , 

2.2. The Stokes equations and boundary conditions 
Employing (2.12), the metric (2.5) is rescaled to 

11 = a l ( l  - EIcln), 12 = a2(1- E K Z ~ ) ,  13 = 1. 

The incompressibility condition may be written 

(2.13) 

and force balances in the el-, e2- and n-directions are (see e.g. Aris 1962; Rosenhead 
1963) 

The stress is given by 

(2.17) 
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2P au3 
0 3 3  = - p +  --, 

E an 

i1 au, u1 ail 

i2 au2 u2 ai2 

0 1 3 = -  

0 2 3 = -  

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

On the free boundaries, given by n = +ih,  we impose stress conditions, incorporating 
the effect of a pressure drop across the sheet, with P+ the pressures applied to the 
surfaces : 

E ah & ah 
0 3 3  = +--013 f ---023 - &P+. 2z1 axl  2z2 ax2 

Using the expression for the convective derivative 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

the kinematic condition may be written in the form 

Eh 1 av3 
u1 -v1 f - 2 (,,,, + -31 a1 3x1 

Eh 1 av3 
u2 - v2 f - (~2212 + --)] . (2.27) 

2 a2 8x2 

2.3. Leading-order equations 
When we formally set E = 0 in (2.13)-(2.27) we see that the resulting homogeneous 
equations and boundary conditions admit eigensolutions in which u(O) is independent 
of n and u r )  = vf). The apparent indeterminacy in the leading-order unknowns is 
resolved by proceeding to higher order in the asymptotic expansion. This results in 
inhomogeneous versions of the leading-order problems. By the Fredholm alternative, 
these inhomogeneous problems have no solutions unless certain orthogonality con- 
ditions are met and it is these solvability conditions that provide us with a closed 
system of equations for the leading-order unknowns. 

Indeed, from (2.25) we expect to have to proceed to terms of 0 ( c 2 )  if we are to 
discern the effect of the driving pressure. The terms of O(E)  in the continuity equation 
and kinematic condition give 
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and, after rearrangement, the averaged conservation of mass equation : 

Then (2.16) with (2.25) can be solved for p(O): 

and (2.14), (2.15) with (2.23), (2.24) give 

(2.31) 

(2.32) 

for some arbitrary functions F1 and F2. Thus the Fredholm alternative does not close 
the model even at this order of approximation and we must proceed to terms of O(c2).  
Following the above procedure, (2.16) and (2.25) yield 

with 

dl) 33 - - -P+ - on n = fib"), 
and hence the transverse stress balance is 

"f')@p + K 2  (0) 022 - (0) + P- - P+ = 0, 

(2.34) 

(2.35) 

where the bar denotes averaging from n = - ih  to n = +ih;  this stress balance is 
just the first of the aforementioned solvability conditions demanded by the Fredholm 
alternative. The equations (2.33) and (2.34) can now be solved for p( ' ) .  Similarly (2.14) 
and (2.15) prescribe the n-derivatives of a!:) and o&) and these may be integrated 
using the terms of O(c2)  in (2.23) and (2.24). The details of this straightforward but 
lengthy calculation can be found in Howell (1994) and here we simply record the 
other solvability conditions in (2.40) and (2.41), given in a form which emphasizes the 
analogy with the shell equations of linear elasticity. Defining the relative velocities 

iil = u1 - v1 and ii2 = u2 - v2, 

and using the relations (2.7)-(2.11), the leading-order forms of (2.17), (2.18) and (2.20) 
are (dropping superscripts (O)) 

(2.38) 
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and (2.29) becomes 

a a a 
-(alazh) + -(fi1a2h) + -(&alh) = 0 ;  
at 8x1 8x2 

(2.39) 

the consequence of the derivation mentioned above is the tangential force balance 

and 

(2.40) 

(2.41) 

The equations (2.35), (2.39)-(2.41), (2.7) and (2.8) form a closed system of seven 
equations for the unknowns h, I C ~ ,  7c2, a l ,  a2, a,, 62. We note that (2.35), (2.40) and (2.41) 
are identical to the equilibrium equations of classical shell theory (see Love 1927, art. 
331). However, in our formulation neither the thickness nor the geometry of the sheet 
is prescribed in advance. One possible procedure for determining the evolution of this 
geometry is to (i) assume we know the variables h,KI,q,al ,a2 at an instant of time, 
(ii) compute the stresses with a ‘shell theory’ calculation from (2.35), (2.40) and (2.41) 
and (iii) update the geometry via the evolution equations (2.36), (2.37) and (2.39). 

3. Symmetric geometries 
The difficulties associated with the evolution of the geometrical variables can be 

minimised if symmetries can be exploited and we shall demonstrate this for planar, 
axisymmetric and for purely two-dimensional sheets. 

3.1. Planar and nearly planar sheets 

It is tempting to consider the case of a flat centre-surface so that for all time, 

a1 = a2 = 1, 1c2 = I C ~  = 0. 

In this case we could, from (2.39)-(2.41), retrieve a closed system comprising an 
evolution equation for h coupled to a second-order elliptic system for f i l ,  i i2  : 

dh a a 
- + -((Wlh) + -((W,h) = 0, 
at ax ,  8x2 

(3.3) 

However, this procedure is not quite justifiable since it has been implicit in our 
derivation that the curvature effects enter the model at lowest order. In order 
to model sheets which are planar or nearly planar, it is necessary to perform the 
asymptotic analysis of 9 2.3 again in the crucial parameter regime when the curvature 
is of O(E). For pressure-driven flow of a sheet with 0(1) curvature, the tangential 
velocities are of 0(1) compared to the normal velocities. However, if a transverse 
pressure is applied to a nearly planar sheet, the enhanced normal velocities demand a 
rescaling that invalidates (3.1)-( 3.3). Despite the fact that fixed Cartesian coordinates 
can be used for this analysis, the asymptotic reduction is complicated and the details 
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can be found in Howell (1995) where a system of equations is derived that generalizes 
the one-dimensional equations of Buckmaster et al. (1975). This system implies that 
nearly flat sheets are much more susceptible to tangential stretching than sheets with 
0(1) curvature in the sense that a curved sheet will in general be able to respond 
to applied stress via a deformation of its centre-surface, while a nearly flat sheet is 
forced to stretch. Indeed, if the imposed tangential stretching is sufficient (the velocity 
gradients need to be at least of order A P / ( E ~ M ) )  that the normal velocity is smaller 
than the tangential velocities by a factor of E ,  then (3.1)-(3.3) can be rescued, albeit 
with scalings different from (2.12); this too is described in Howell (1995) where the 
complementary equation for the displacement of the centre-surface is also given. 

3.2. Axisymmetric sheets 
The viscous shell equations may be simplified considerably if the sheet under con- 
sideration is axisymmetric, so that the lines of curvature are the meridians and 
parallels. The velocity may, however, have both axial and azimuthal components. We 
parametrize the centre-surface by arclength s(= x l )  and polar angle 8(= x 2 / L ) :  

R( s, t )  cos 8 
, where ds2 = dR2 + dz2. (3.4) 

The scaling factors and principal curvatures are then given by 

112 

a, = 1, ae = R, TC, = - [ 1 - (dR) '1 -1'2 ~ d2R a s 2  , =: ' R [1 - (3'1 . (3.5) 

We suppose all variables are independent of 8. Denoting by us and ue the fluid 
velocity components in the s- and &directions relative to the moving centre-sheet, 
the equations of motion may be written in the form 

a a 
at as 
- (Rh) + -(u,Rh) = 0, 

where the extensional and hoop stresses are given by 

The azimuthal velocity ue satisfies a decoupled equation 

?- as ( p R 2 h z )  = O .  

(3.10) 

(3.11) 

It is easily verified that (3.6)-(3.10) reduce to the steady-state model of Pearson & 
Petrie (1970a, equations 16 and 17) if the time-derivatives are neglected and the 
viscosity is assumed constant. They also reduce, when linearized for small R, to the 
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model of Yarin et al. (1994) for the drawing of a hollow slender axisymmetric fibre; 
(3.7) becomes 566 = RAP approximately and hence (3.8) and (3.10) reduce to 

2 as ( 3 p R h g )  =0, AP.  R = 2ph 

respectively, where we have a Trouton viscosity 3p characteristic of axisymmetric 
fibre drawing. It is also interesting to consider the formal limit as R + co while the 
derivatives of R remain bounded, in which case (3.6)-(3.10) reduce to the model for 
a purely two-dimensional sheet (which we will describe further in $3.3). In this case 
the Trouton viscosity is found to be 4p, which is typical for the stretching of planar 
sheets. Hence (3.6)-(3.10) show how the Trouton viscosity for a hollow fibre changes 
from 311 to 4p depending on the geometry (see Howell 1994 for further details). 

We shall not discuss the solution of (3.6)-(3.10) in general but concentrate on two 
simple examples which can be solved explicitly. 

3.2.1. Circular cylinders 

for the radius and thickness of a two-dimensional, cylindrical sheet: 
Neglecting s-variations leads to the following pair of ordinary differential equations 

dR R2AP - d 
dt dt 4ph ' 

-(Rh)=O, - - - (3.12) 

With initial conditions R(0) = &, h(0) = ho and for constant A P  and p, these are 
readily solved to give 

(3.13) 

so that the radius becomes infinite and the thickness vanishes in a finite time 

Note that this problem can be solved exactly, without using the slenderness of the 
sheet, by simply solving the Stokes equations in cylindrical polar coordinates. This 
results in the system 

t' = 2pho/(&AP). 

- -(Rh) d = 0, - dR - (R2 - T) , dt dt 4ph 
(3.14) 

with solution 

2 Roho R = -coth , h2 = 2&ho tanh 
2 

where the blow-up time is now given by 

A P  
(3.16) 

The simple solution found above is clearly the leading-order term of this exact solution 
as ho/& + 0. 

We have shown that the radius of a circular fluid sheet will become infinite in finite 
time under a constant pressure drop. Physically this happens because the applied 
pressure generates a force proportional to the radius which must be balanced by the 
normal stress which is proportional to the product of the thickness and the strain 
rate R/R; meanwhile the radius has to be inversely proportional to the thickness in 
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order to conserve mass. However, maintaining a constant pressure drop as the volume 
inside the sheet becomes large may not be physically realizable and it is more realistic 
to prescribe the mass of gas inside the sheet as a function of time, and assume a gas 
law to give the pressure; it is easy to show that the radius will then remain finite. 

3.2.2. Spheres 
Another axisymmetric surface for which an explicit solution of the viscous shell 

equations can be found is a sphere. Assuming radial symmetry, the radius and 
thickness now satisfy 

d dR - R2AP 
-(R2h) = 0, - - __ 
dt dt 12ph ’ 

and hence are given by 

(3.17) 

(3.18) 

The blow-up time is 4pho/(&AP). In this case, the exact solution of the radially 
symmetric Stokes equations is given implicitly by 

(3.19) ( R  + ih )3  - (R - i h ) 3  = (& + iho)3 - (& - iho)3 = V 

say, and 

V 
( R  + ih I3  = e3Ap(,.-,114p - AP (3.20) 

3.3. General cylindrical sheets 
Numerical calculations for a sheet without axial symmetry have been made by Burley 
& Graham (1991), Graham et al. (1992). If the sheet is flat in the x2-direction we 
may simplify the viscous shell equations by setting 

a 
8x2 

al  = a2 = 1, rc2 = ii2 = v2 = - = 0. 

The choice a1 = 1 means that x1 may be identified with arclength s, and the equations 
become 

(3.21) 

aa, 
4PhlC1- as + A P  = 0, (3.22) 

as ( 4 p h 2 )  = O .  (3.23) 

Without an applied pressure we find either rcl = 0 or 81 = 0. In the first case where 
the sheet is straight, the equations are the same as for the drawing of a slender fibre, 
the time-dependent Trouton equations for viscous flow (Dewynne et al.  1989). In the 
second case, h, = 0 and it is necessary to proceed further with the expansions to find 
an expression for r c 1 .  This latter case has been considered by Buckmaster et al. (1975) 
for a curved viscous fibre constrained to move in a plane and we will say more about 
this in the conclusion. However, when the pressure drop is included it is unnecessary 
to proceed any further with the expansions. Indeed, (3.22) and (3.23) imply 

- = 0, arc1 

as 
(3.24) 
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s = o  2d s = e  

P- 
FIGURE 1. Extension of a two-dimensional thin sheet held at the ends. 

so the curvature is uniform and hence the sheet must form a circular arc. Then h and 
G1 satisfy the Trouton model: 

ah a aa, 
at as as 
- + -(Glh) = 0, h- = a(t), (3.25) 

where a(t), the scaled tension in the sheet, is given in terms of the radius R of the arc 
formed by the sheet: 

a(t) = RAP/4p. (3.26) 
In the axisymmetric case these equations reduce to (3.12), which is easily retrieved 
when employing fixed (polar) coordinates. 

Suppose the sheet is fixed at its two ends and blown out under an applied pressure 
drop; see figure 1. This configuration has been the subject of a numerical study 
(Graham et al. 1992) and is the prototype for more realistic models of industrial 
blowing processes (Pearson 1985, $20.1). The initial and boundary conditions to the 
equations (3.25) read 

h(s,O) = ho(s), iil(0, t )  = 0, G,(L'(t), t )  = ?(t). (3.27) 

The governing equations (3.25) and boundary conditions (3.27) are identical to the 
fibre-drawing problem considered by Dewynne et al .  (1989), in which the length tf' 
is assumed to be a given function of t. However, for our pressure-driven extension 
the growth of L' is yet to be determined via the extra relation (3.26) which gives the 
tension a as a function of radius R, which is in turn a function of L'. Indeed, it is 
easily seen that R and L' are related by 

2R sin-' (d /R)  
(3.28) 

A plot of R against L' is shown in figure 2, with a minimum R = d at L' = nd when 
the sheet is semicircular. 

In Dewynne et al. (1989) it is shown that, with a partial hodograph transform 
(3.25) can be reduced to an ordinary differential equation for the thickness h:  

h, = hF(h + T )  (3.29) 

where the function F is determined by the initial condition ho(s), from hos = hoF(h0) 
and T is given by 

T = -h(O, T )  + ho(0) = -h(L'( T ) ,  T )  + ho(L'0). (3.30) 

for 2d < L' < nd, 
'={2R[ n - sin-' (d /R)]  for nd < tf' < co. 
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R t  

I 
I D 

0 xd e 
FIGURE 2. The sheet radius as a function of its length. 

The ordinary differential equation (3.29) shows immediately that the layer of fluid 
cannot break if the function F is Lipschitz continuous, but the film can break if 
there is a cusp in ho(s) or if the film becomes infinitely long (which will happen 
in finite time). In the present problem the solution is complicated by the fact that 
E is not known in advance. As in Pearson (1985, $20.2), this difficulty can be 
circumvented by transforming the problem into the Lagrangian variables 5 and z 
satisfying ~ ( 5 ,  z) = s, z = t, with 

x7(5,z) = &(s, t ) ,  x ( 5 , O )  = r ,  x(0, z) = 0, x(1, 7) = “t). (3.31) 

We have scaled in such a way that the length of the sheet is initially 1. Then (3.25) 
gives 

which may be integrated to give 

(3.32) 

From (3.25) it follows that h, = a(z) and we may write 

where f satisfies 
RAP 

f(z) = a(z) = - , f(0) = 0. 
4P 

Here R is related to E by (3.28) and E to f by 

(3.34) 

(3.35) 

Once f is known, h(s,t) is found from (3.33) and (3.32). 
Now we have to solve the integrodifferential equation (3.34) for f which is compli- 

cated by the awkward implicit form (3.28). However, some interesting results about 
the asymptotic behaviour of f ,  and hence R, h and E, may be obtained using approxi- 
mations for R(E). Of particular interest is the behaviour of the sheet when it is close to 
break-up, that is when f is close to the minimum value of ho, say ho(b) and the length 
of the sheet is large. With d / E  small we can use R - (E/27c)(l + 2(d/E) + O(d/E)3).  
Assume h;j(b) exists and is non-zero, then the asymptotic form of E as a function of 
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FIGURE 3. The blow-up behaviour of a cylindrical sheet with e0 = 1, d = 0.1, p = 1 and applied 
pressure AP = 1. Times shown: t = 0.0, 0.5, 1.0, 1.1. 

the minimum thickness h, = h(b,z) is found to be 

(3.36) 

and the leading-order solution of (3.34) reveals that the minimum thickness goes to 
zero like 

while the radius goes to infinity like 

(3.37) 

(3.38) 

We thus find that a smooth variation in the initial thickness changes the time- 
behaviour near blow-up from R - (z* - z)-1/2 for a uniform initial thickness (cf. 
(3.13)) to R - (z* - z)-ll3. If A P  is constant the blow-up time is given by 

(3.39) 

which is finite since R 2 i. Figures 3 and 4 show examples of the blow-up of sheets 
with different initial thicknesses but with the same initial volumes. 

4. Discussion and conclusions 
A wide variety of industrially relevant pressure-driven liquid sheet flows are gov- 

erned by a balance between the viscous stresses and the applied pressure. For such 
flows, we have derived the leading-order equations governing the dynamics of a 
sheet of arbitrary geometry. It is easy to see that our model (2.35)-(2.41) reduces 
to the equations (16)-(17) of the pioneering work of Pearson & Petrie (19704 in 
the steady, axisymmetric case and to the evolution model of Yarin et al. (1994) 
in the axisymmetric case. The only discrepancy that we have found is that when 
the viscosity is non-constant, our procedure would give a model different from that 
in Pearson & Petrie (1970~) in that a term involving the derivative of the viscosity 
appears in our analogue of Pearson & Petrie’s equation (17). All these models have 
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FIGURE 4. (a)  The blow-up behaviour of the radius R(t )  is shown for initial thickness of the sheet 
given by ho(s) = 0.1 + 6(s2 - s + d )  and 6 = 0.5, 0.1, 0.01, 0. Again 80 = 1, d = 0.1, p = 1 and 
AP = 1. The change in thickness is shown in (6) for 6 = 0.1, t = 0, 0.5, 1. 

a strong analogy with the shell equations of linear elasticity except that for viscous 
liquids the geometry can change substantially with time. In cases where the form of 
the geometry is preserved some analytical progress can be made, such as for a strictly 
two-dimensional sheet. 

Of particular interest for the bottle-blowing problem is the evolution of a viscous 
sheet under an applied pressure drop. The simple analytical examples described 
suggest that such a sheet is likely to undergo finite-time blow-up if the pressure 
drop is held constant. The form taken by this blow-up is strongly dependent upon 
non-uniformities in the sheet thickness. 

In many situations the effects of surface tension, gravity and inertia are small 
but we have indicated how they can be incorporated in the Appendix. In physical 
situations the viscosity p will be a prescribed function of the temperature, which 
must be found from a coupled heat transfer equation. For simplicity we have only 
pursued the isothermal case. However, we note that the case in which p is convected 
faithfully with the flow may be covered by our analysis by rescaling h with p. Finally, 
another generalization of the model that has not been incorporated concerns the case 
when contact is made with a fixed surface, such that three phases - molten glass, 
air and a mould - meet at one particular line, and the model has to be extended to 
cover the different boundary conditions and the behaviour of the contact line; this 
configuration has been considered in Pearson (1985, 920.2). 

Paradoxically, as mentioned in 0 3.1 the most complicated parameter regimes that we 
have considered are those where the sheet is nearly flat. This situation can be clarified 



Pressure-driven flow of a thin viscous sheet 373 

by recalling the modelling of sheets which are not pressure-driven but only respond 
to prescribed boundary motion U ,  say. There, as shown for purely two-dimensional 
flow in Buckmaster et al. (1975), a sheet with O(1) curvature undergoes negligible 
stretching and responds on a timescale L / U .  Moreover, when the curvature is O(E)  
or less then, as shown in Wilmott (1989), a two-dimensional sheet stretches according 
to the extensional flow model (3.21)-(3.23) (with AP = 0), also on a timescale L / U .  
In this latter case, an initially curved centre-line straightens on a shorter timescale 
E * L / U ;  moreover, as shown in Buckmaster et al. (1975) and Wilmott (1989), the 
motion on the shorter timescale exhibits stability and reversibility properties quite 
different from those of (3.21)-(3.22), and much more like those of the inextensional 
model of Buckmaster et al. (1975). 

Our assumption that the flow is entirely pressure-driven implies that even the O( 1) 
curvature motion is still described by an extensional flow model, albeit of a more 
general character than that for a two-dimensional sheet. An illustration of behaviour 
analogous to that found by Buckmaster et al. (1975) is the immediate adoption of a 
circular centre-line geometry in (3.23). However, from the preceding discussion, it is 
clear that short timescale motions even of O( 1) curvature configurations are possible, 
for which the model is quite different from that of $2. An example would be the 
blow-out problem of figure 1 with a non-circular initial configuration. It seems likely 
(although unproven to our knowledge) that any curved surface will respond over a 
short timescale to an applied pressure drop via an isometric deformation - one in 
which no stresses are induced in the fluid sheet - followed on a longer timescale 
by an extensional flow. We conjecture that over the short timescale the sheet will 
assume the shape which maximizes the volume enclosed inside the sheet, over all 
surfaces which are isometric to the initial shape of the sheet. This conjecture is clearly 
a generalization of our result that over a short timescale, a two-dimensional sheet 
subjected to a pressure drop forms a circular arc - the configuration that maximizes 
the area which may be enclosed without altering the length of the sheet. 

We would like to thank Mr D. Gelder of Pilkington Group Research and Dr D. 
M. Burley for many helpful discussions. We are grateful for the financial support of 
EPSRC (P.D.H.) and HCM (B.W.vdF.). 

Appendix. Surface tension, gravity and inertia effects 
If we are to include surface tension, gravity or inertia effects in the model, we need 

to make an assumption about the relative size of the coefficients. For instance, for an 
extremely slender film, such as a lamella in a foam, we may expect the geometry to 
be dominated by surface effects; such an application has been considered by Ida & 
Miksis (1995). 

A. 1. Surface tension 
In order to model surface tension effects we will scale the dimensionless surface 
tension coefficient with E and assume 

* Y  y = - = O(1). 
LAP 

After this scaling, the viscous shell equations (2.35)-(2.41) are unchanged except for 
the normal force balance (2.35) which becomes 

~ l ( @ l l  + y ' )  + 1c2(@22 + y ' )  + AP = 0. (A 1) 
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FIGURE 5. Extrusion of a cylindrical sheet under the influence of gravity. 

As an example of the stabilizing effect of surface tension, we consider the evolution 
of a two-dimensional viscous sheet with surface tension. 

It was found in 0 3.3 that an inertia-free, slender two-dimensional viscous sheet will 
always form a circular arc under an applied pressure drop. This property is preserved 
when surface tension effects are included, and the only effect on the Trouton model 
of $3.3 is to change the tension equation (3.34) to 

As a result of this, if y* > dAP then there exists a stable steady state at which 
and surface tension balances the pressure drop. 

= 0 

A.2. Gravity 
To model the extrusion of a sheet under the influence of gravity we impose a body 
force in the negative z-direction (figure 5 ) ,  and, in order to balance gravity and viscous 
stresses, we scale the dimensionless parameter St with E :  

S t = - -  p g L  - O(1). 
AP 

For example, when studying a cylindrical sheet including gravity acting on it, the 
equations (3.7), (3.8) are changed to 

and 
a aR 

- ( R 2 ~ s C s s )  = St Rh + AP R-. 

A.3. Inertia eflects 

as as 

In a typical glass-blowing process, inertia effects are only likely to be important if the 
process is very fast or if the glass is very hot. In order to include inertia effects in the 
viscous shell equations, it is necessary to calculate the acceleration vector of the fluid. 
This may be done using the convective derivative (2.26) and noting that, for a vector 
field V ,  

DV av a v D x i  
Dt at axi Dt 

- +--, 
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where the sum is from i = 1 to 3. Employing the leading-order equations of $2.3, 
the leading-order components of the acceleration vector are given by (dropping 
superscripts) 

+ -- + -- - v3 
DU au2 iil au2 n2 au2 
Dt at a1 ax, a2 ax2 

e 2 - - - -  

The viscous shell equations are modified to take account of inertia by replacing AP 
in (2.35) by AP -Re  hn. DulDt  and by adding -Re ala2hei Du/Dt  for i = 1,2 in the 
left-hand sides of (2.40) and (2.41). 

For example, the equations for a two-dimensional sheet used in $ 3.3 become 

where 
axl a av3 801 

as at as as - = K1v3 and - = - (- + .,,,> . 
The inclusion of inertia makes the equations much harder to solve. In particular, the 
property found in 0 3.3 that the sheet will always form a circular arc is lost here, and 
in general we must solve a coupled problem for the curvature. 
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